The Colorado Ultraviolet Transit Experiment (CUTE):

A cubesat to study the most extreme exoplanets

Kevin France – University of Colorado APAC Meeting, 15 March 2021

Extrasolar Planets:

N_{plan}(2021) ~4300 Confirmed

 \sim 200 × N_{plan}(1999)

The Extrasolar Planet Zoo

Hot Jupiter

WASP-18b, solar-type host M \sim 10 M_J, R \sim 1.1 R_J a \sim 0.02 AU T_{eff} \sim 2400 - 3100 K (Hellier et al. 2009)

Super-Earth

GJ 832c, red dwarf host M sin(i) \sim 5.2 M_E, R \sim 1.5 R_E a \sim 0.16 AU T_{eff} \sim 230 - 280 K

(Wittenmyer et al. 2014)

ATMOSPHERIC ESCAPE, NEAR AND FAR

- Escape alters ~all planetary atmospheres
- The high-energy stellar emission dominates atmospheric photochemistry, ionization, and heating
- •Exoplanets are laboratories for studying extreme mass loss that no longer operates in the solar system

HOT JUPITER ATMOSPHERES

- EUV heating driving mass-loss from short-period planets
- Most spectacular example has been on the short-period Neptune-mass planet GJ 436b

EXOPLANET ATMOSPHERES

•Narrow-band/spectroscopic transit analysis can probe absorption by specific atmospheric constituents

Occultation Depth = $(R_p / R_*)^2$

EXOPLANET ATMOSPHERES

•Narrow-band/spectroscopic transit analysis can probe absorption by specific atmospheric constituents

Occultation
Depth = $(R_P(\lambda) / R_*)^2$

Transit Spectroscopy: in-transit vs. out-of-transit

- Composition
- Temperature structure
- Velocity flows
- Mass-loss rates

Transit Spectroscopy of Short-period Planets

- EUV heating driving mass-loss from short-period planets
- Most spectacular example has been on the short-period
 Neptune-mass planet GJ 436b

Hydrogen escaping from the upper atmosphere of GJ436b

(Kulow et al. 2014; Ehrenreich et al. 2015; Bourrier et al. 2016; Lavie et al. 2017)

Transit depth ~ 50% (!)

•For the ~half-dozen Hot Jupiters measured with Hubble, we often find conflicting results, even on the same planet!

•Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

 Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

•Sample size of mass-loss measurements ~6, early-

ingress ~1, late-egress ~2

 Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

•Sample size of mass-loss measurements ~6, early-

ingress ~1, late-egress ~2

 Stellar baseline for transit measurements

•Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

•Sample size of mass-loss measurements ~6, early-

ingress ~1, late-egress ~2

 Stellar baseline for transit measurements

•Self-consistent modeling framework

 Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

→ multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~6, early-

ingress ~1, late-egress ~2

Stellar baseline for transit

measurements Self-consistent modeling framework

 Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

→ multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~6, early-ingress ~1, late-egress ~2

→ dedicated platform = more data

 Stellar baseline for transit measurements

Self-consistent modeling framework

•Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms

→ multiple, consecutive transits, single data pipeline

•Sample size of mass-loss measurements ~6, early-ingress ~1, late-egress ~2

→ dedicated platform = more data

- Stellar baseline for transit measurements
 - $\rightarrow \pm$ 0.25 phase coverage
- Self-consistent modeling framework

- •Often discrepant results: time-variability in the star(?), planetary mass-loss rate (?), or apples-vs-oranges observations and data reduction algorithms
 - → multiple, consecutive transits, single data pipeline
- •Sample size of mass-loss measurements ~6, earlyingress ~1, late-egress ~2
 - → dedicated platform = more data
- Stellar baseline for transit measurements
 - \rightarrow ± 0.25 phase coverage
- Self-consistent modeling framework
 - → state-of-the-art, physically self-consistent models

Colorado Ultraviolet Transit Experiment (CUTE)

University of Colorado:

Kevin France (PI), Brian Fleming (PS), Arika Egan, Rick Kohnert (PM), Nicholas Nell, Stefan Ulrich, Nick DeCicco, Ambily Suresh, Wilson Cauley

United States:

Tommi Koskinen (UofA), Matthew Beasley (SwRI), Keri Hoadley (Caltech/Iowa)

Europe:

Jean-Michel Desert (Amsterdam), Luca Fossati (ÖAW), Pascal Petit (UdeT), Aline Vidotto (TCD)

1) Atmospheric mass-loss rates

2) Escaping atmosphere composition

- Most detections of atmospheric mass loss have been carried out in the FUV, Lyα (e.g. Vidal-Madjar+ 2004, 2013, Linsky+ 2010, Ben-Jaffel+ 2007, 2013, Kulow+ 2014, Ehrenreich+ 2015, Bourrier et al. 2018)
- Controversial interpretation due to low-S/N and uncertain chromospheric intensity distribution (e.g., Llama & Shkolnik 2015).
- The NUV has a more uniform, mainly photospheric, intensity distribution

Source: SDO

Krivova et al. 2006

- Most detections of atmospheric mass loss have been carried out in the FUV (e.g. Vidal-Madjar+ 2004, 2013, Linsky+ 2010, Ben-Jaffel+ 2007, 2013, Kulow+ 2014, Ehrenreich+ 2015, Bourrier et al. 2018)
- Controversial interpretation due to low-S/N and uncertain chromospheric intensity distribution (e.g., Llama & Shkolnik 2015).
- The NUV has both a more uniform, mainly photospheric, intensity distribution AND an overall brighter background for transit observations, ~50-1000x brighter.

WASP-121b; Sing et al. 2019

- Brighter stellar flux enables spectroscopy in a correspondingly smaller platform
- Spectroscopy required to isolate escaping gas species

Astronomy with Cubesats: Dedicated Mission Architecture

CUTE: First NASA grant funded UV/O/IR astronomy cubesat

Halosat X-ray cubesat (P. Kaaret, Univ. Iowa)

More widely used in Earth observing, education,
 and solar physics (e.g. CSSWE, MinXSS – Mason et al. 2017)

ASTERIA - JPL

Astronomy with Cubesats: Dedicated Mission Architecture

CUTE:

11.0 cm x 23.7cm x 36.2 cm

Family Size Cheerios available on Walmart.com: 7.8 cm x 23.9 cm x 34.4 cm

CUTE Telescope

Source: Nu-Tek Precision Optics

See CUTE design overview in Fleming et al. (2018)

Geometric clear area for a 9cm Cassegrain: A_T ~ 47 cm²

Geometric clear area for a 20 x 8 cm Cassegrain: $A_{CUTE} \sim 140 \text{ cm}^2$

CUTE ~ 3 x more collecting area

CUTE Science Instrument

CUTE Telescope (Flight)

See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)

CUTE Telescope (Flight)

See CUTE design overview in Fleming et al. (2018); Egan et al. (2018)

CUTE Telescope (Flight)

CUTE Operations: Student Ops Team

Student & PI Training Opportunities

Dr. Ambily Suresh

Stefan Ulrich

Arika Egan

Nick DeCicco

Prof. Kevin France

Prof. Brian Fleming

Integrated CUTE Science Instrument

CUTE Spacecraft: Blue Canyon Technology

CUTE Spacecraft Testing

CUTE End-to-End Testing

CUTE End-to-End Testing

Instrument Sensitivity:

$$A_{eff} = A_T R^5 \epsilon_{grat} QE_D = 20-30 cm^2$$

 $R \approx 2000$

CUTE Predicted Science Data

CUTE will achieve >3 σ detections of transits as low as 0.1% depth for the brightest targets. Transit depths < 1% for all baseline targets with 5+ lightcurves per target.

Continuum transit sensitivity to 0.7% depth for median target over 1 transit

= Capable of detecting geometric transit and atmospheric transit

CUTE Predicted Science Data

= Capable of detecting geometric transit and atmospheric transit

CUTE Status

When will the Landsat 9 satellite be launched?

Landsat 9—a partnership between the USGS and NASA—has a launch readiness date of December 2020.

Landsat 9 will be launched from Space Launch Complex 3E at Vandenberg Air Force Base in California and will be delivered into orbit by a United Launch Alliance Atlas V 401 launch vehicle.

Learn more: Landsat 9 Mission

When will the Landsat 9 satellite be launched?

Landsat 9—a partnership between the USGS and NASA—has a launch readiness date of December 2020.

Sept 2021

Landsat 9 will be launched from Space Launch Complex 3E at Vandenberg Air Force Base in California and will be delivered into orbit by a United Launch Alliance Atlas V 401 launch vehicle.

Learn more: Landsat 9 Mission

CUTE Status

- Proposed ROSES D.3 APRA March 2016
- Selected February 2017, funded July 2017
- Science Team face-to-face meetings:
 Oct 2017, Nov 2018, Oct 2019, (Dec 2020)
- Assembly, test, calibration: almost complete
- Environmental Testing: April/May 2021
- Launch Late Q3-2021
 - 8 Month Baseline mission:
 - 12 exoplanetary systems, 6-10 transits each

55

 12 – 20 additional systems in 12 month extended mission

END

CUTE Example Target Visibility List

